FantLab ru


Сообщения на форуме посетителя BacCM
Страницы:  1  2  3  4 [5] 6  7  8  9 ...  15  16  17  18  19 

 автор  сообщение
 Кино > 300 спартанцев (2007) > к сообщению


философ
Отправлено 26 марта 2007 г. 10:36
Говорят кроме батальных сцен ничего нет. Но это выглядит как "Не читал но осуждаю". Дождусь в сети и посмотрь, может потом пожалею что не сходил в кино
 автор  сообщение
 Другие окололитературные темы > Ляпы в произведениях наших и не только наших ;-) авторов-фантастов > к сообщению


философ
Отправлено 26 марта 2007 г. 10:24

цитата ona

А как вам "поставленные торчмя гигантские камни" — описание Стоунхенджа в "Последнем защитнике Камелота" Р.Желязны в переводе И. Тогоевой??

По крайней мере понятно
 автор  сообщение
 Другие окололитературные темы > Ваше отношение к аудиокнигам > к сообщению


философ
Отправлено 26 марта 2007 г. 10:23
Demid
На работе к сожалению не получается слушать — по крайней мере совместно с работой...
А во насчет "Против" мне как раз больше нравится просто качественно начитанный текст, нежели постановка.
 автор  сообщение
 Другие окололитературные темы > Какие авторы лучше: отечественные или зарубежные? > к сообщению


философ
Отправлено 26 марта 2007 г. 10:19

цитата Kurok

Толстой писал развлекательную литературу (для того времени). Классикой она стала позже.
Достоевский — отдельный разговор, но в принципе "Преступление и наказание" можно считать дедективом с психологическим уклоном. Кстати совершенно неареалистичным.

Вот и я так думаю. Вообще мания приписывать великим художникам (писателям, композиторам, живописцам....), что они хотели каждым своим чихом что-то донести достала еще в школе...

А насчет какие авторы лучше пока пипл хавает будет то-что есть как и с нашей фанерной попсой
 автор  сообщение
 Издания, издательства, электронные книги > Книги на экране монитора?.. > к сообщению


философ
Отправлено 26 марта 2007 г. 10:05
Будущее за электрическими книгами, уже сейчас много достточно дешевых технологий позволяющих нормально читать книги на компактных устройствах. Дальше будет только улучшение качества и удешевление.
 автор  сообщение
 Другие окололитературные темы > Об аспектах употребимости термина "раса" в фантастике > к сообщению


философ
Отправлено 23 марта 2007 г. 11:20

цитата Ny

Мнение автора таково: Роман включает элементы научной фантастики. Да, с биологической точки зрения название неверное, но т.к. в среде писателей фантастики (как я понял) подобное отношение к этому вопросу уже сформировалось, то можно оставить всё как есть.
Я указал автору на последствия этого шага для нашей научной фантастики, жду ответа.

Осталось ждать когда термин официально в русском языке изменит определение.
 автор  сообщение
 Другие окололитературные темы > Использование термина "измерение" в фантастике > к сообщению


философ
Отправлено 23 марта 2007 г. 10:01
Buente
Вот в качестве иллустрации моих слов
Два одномерных мира, хотя с точки зрения двумерного мира они и не одномерны, тем не менее внутри мира возможно перемещение только в одном измерении. И вот они пересекаются в точке Х. В итоге "житель" черного мира двигаясь по направлению от A к B в точке X может попасть в другой мир — потомучто эта точка одновременно находится в обоих мирах.
 автор  сообщение
 Другие окололитературные темы > Использование термина "измерение" в фантастике > к сообщению


философ
Отправлено 23 марта 2007 г. 09:38

цитата Buente

С точки зрения многомерного наблюдателя это может и можно назвать пересечением, но "жители" одномерных миров этого не ощутят. С их точки зрения никакого пересечения нет

С их точки зрения пересечение будет выглядеть в рамках ихнего мира. И теоретически можно допустить, что пересечение будет неким разрывом через который можно случайно или специально перемещаться между мирами.
PS: А углы — это всего лишь аналогии в привычных нам простарнствах одномерное, двумерное, трехмерное. В двумерном пространстве одномерные миры если они прямые могут быть расположены под углами друг к другу.
 автор  сообщение
 Другие окололитературные темы > Использование термина "измерение" в фантастике > к сообщению


философ
Отправлено 22 марта 2007 г. 18:47

цитата Buente

BacCM, кажется я нашел логическую ощибку в подобных рассуждениях (и в своих насчет пересечений). Одномерные миры обладают одним измерением. Значит одномерный мир с подобным измерением либо параллелен, либо совпадает с данным. "Под углом" другой одномерный мир проходит в ДРУГОМ измерении! Ибо в одномерном мире нет углов. Таким образом, получается, что "под углом" одномерные пространства пересечься не могут.
Подозреваю, что подобные рассуждения можно распространить и на n-мерные пространства

Это "внутри" мира "нет углов", а "снаруружи" миры могут располагаться под разными углами, соответственно и пересекаться.
 автор  сообщение
 Другие окололитературные темы > Использование термина "измерение" в фантастике > к сообщению


философ
Отправлено 22 марта 2007 г. 09:48

цитата frantic

равда для существ способных разумно оценить ситуацию и живущих в пятимерном мире трехмерный объект должен выглядеть как для нас, например, выглядит плоскость. Как известно у нее две меры, не считая время. Так и эти существа увидят трехмерный объект "неполным"

Почему пятимерные существа увидят трехмерный мир неполным?
 автор  сообщение
 Трёп на разные темы > Как Вы отмечаете место в книге (бумажной!), когда нужно отвлечься? > к сообщению


философ
Отправлено 22 марта 2007 г. 09:43

цитата Ерохин

Интересно подобный вариант с КПК или ноутбуком у кого-нибудь был?

На hpc.ru периодически народ вылазит с подобными проблемами. Некоторым даже удается восстановить, но большинство тел идет на разбор.
 автор  сообщение
 Другие окололитературные темы > Об аспектах употребимости термина "раса" в фантастике > к сообщению


философ
Отправлено 22 марта 2007 г. 09:35

цитата Ny

1) Сообщить об этом автору и узнать его мнение на этот счёт (это могу сделать я в частном порядке)

Сообщи, будет любопытно что ответит, если ответит конечно.
 автор  сообщение
 Другие окололитературные темы > Использование термина "измерение" в фантастике > к сообщению


философ
Отправлено 22 марта 2007 г. 09:33
Ny
Все-таки параллельными будут именно трехмерные миры рараллельны между собой, притом обычно так в фантастике и описано. Ни разу еще не встречал фантастики, где бы использовалось четвертое пространственное измерение и действи происходило бы и в нем. Время в качестве измерения выступало неоднократно, а вот пространственное измерение нет.
 автор  сообщение
 Другие окололитературные темы > Использование термина "измерение" в фантастике > к сообщению


философ
Отправлено 21 марта 2007 г. 16:22

цитата Buente

Попробую рассмотреть на примере 1 и 2 мерных (прямая и плоскость). Прямая пересекает плоскость. Но плоскость можно рассмотреть как бесконечное множество прямых. Следовательно, прямая, пересекая плоскость, пересекает и прямую, проходящую в плоскости. Таким образом, имеем пересечение двух прямых, то есть двух одномерных миров. Они пересекаются общим измерением, поэтому с точки зрения одномерного наблюдателя являются ОДНИМ миром.

Прямая пересекающая плоскость пересечет множетво прямых на плоскости. Естественно одномерный наблюдатель на прямой не сможет понять что пересеклось с его миром — он будет видеть лишь точку. Соответсвенно он не увидит это как один единый мир, с другой стороны если существование этого одномерного мира допустить не только на прямой, но и на любой линнии в том числе и ломанной. Тогда в точке пересечения линй будет наблюдаться парадокс раздвоения пространства.

цитата Buente

Мы имеем в данном случае кривизну одномерного пространства (кривизна видна только для наблюдателя с большим числом измерений)

Тут да, все эти искривления и пересечения видны только мз пространства с большим числом измерений.
 автор  сообщение
 Другие окололитературные темы > Использование термина "измерение" в фантастике > к сообщению


философ
Отправлено 21 марта 2007 г. 15:11

цитата Buente

По-моему, Вы сами себе противоречите. Так знает наблюдатель про куб или нет? Если он двумерный, то ни каком кубе речи быть не может. А если он рассматривает трехмерный куб, то это уже не с точки зрения "двумерного" наблюдателя

Тут я говорю только о пересечении пространств, для наблюдателей из разных пространчтв этот процесс будет выглядеть по разному — именно в рамках числа измерения конкретного пространства.
 автор  сообщение
 Другие окололитературные темы > Использование термина "измерение" в фантастике > к сообщению


философ
Отправлено 21 марта 2007 г. 12:00

цитата Buente

Может. Трехмерная прямая может пересекать трехмерную плоскость. Трехмерная плоскость может пересекать трехмерный куб (и т.п.)
А, например, на плоскости понятия "куб" нет. Поэтому двумерная прямая не может пересечь трехмерный куб, поскольку в ее прстранстве и куба то нет. Есть только его проекция

Согласен, только вот сточки зрения "двумерного" наблюдателя на плосткости она таки пересекает куб, хотя он и не знаеи что это куб, так же он не знает что плосткость трехмерна, для него она двумерна
 автор  сообщение
 Другие окололитературные темы > Использование термина "измерение" в фантастике > к сообщению


философ
Отправлено 21 марта 2007 г. 10:03
Buente
Может ли прямая пересекать плоскость, а плоскость пересекать куб?
 автор  сообщение
 Техподдержка и развитие сайта > Мнение о цифровых оценках > к сообщению


философ
Отправлено 21 марта 2007 г. 09:59

цитата Nortaga

Цифра — это абстрактное понятие.

Цифра это как раз понятие конкретное, абстрактное это слова. Например в слова хорошая книга каждый вкладывает разное. У кого-то над "хорошим" есть еще с десяток определений более высокого качества, у другого это вершина качества.
А цифры это конкретика — 5 всегда больше чем 4 и выше 5 есть есть еще пять ступеней.

Вы практически всегда можете гипотетически разложить все прочитанные книги в ряд от самых худших к самым лучшим, примеро одинаковые складывать стопкой одна на другой и в итоге объединяя такие стопки получить десять штук, вот и получилось что книги оценены от 1 до 10.

Здесь это уже не раз обсуждалось — для более качественной оценки полезно иногда пересматривать балы поставленные вами книгам.
 автор  сообщение
 Трёп на разные темы > Ваш любимый анекдот > к сообщению


философ
Отправлено 21 марта 2007 г. 09:49
tevas
Не понял где лопата
 автор  сообщение
 Техподдержка и развитие сайта > [dev] Мобильная версия сайта (nano.fantlab.ru) > к сообщению


философ
Отправлено 21 марта 2007 г. 09:48
Пробовал — неудобно, привычнее горизонтальное расположение. Хотя конечно кода больше на экран влезает :)

Страницы:  1  2  3  4 [5] 6  7  8  9 ...  15  16  17  18  19 
⇑ Наверх